Telemersive Toolkit

Exchange Multi Media Streams for Distributed Networked Performance Installations

Martin Frohlich*
Roman Haefeli®

Patrick Miiller¥
martin.froehlich@zhdk.ch
roman.haefeli@zhdk.ch
patrick.mueller@zhdk.ch
Zuerich University of the Arts
Zurich, ZH, Switzerland

roomName locallP publiclP room|D peerlD
cDnpWabeRTSMAsgmmdudgk |-

[10.123.140.117)(195.17629.132) 11

E‘ T TutorialMac
*

i

MoCap

he he

e
a Q MoCap
¥ I

ultragid ultragrid
+ +

MoCap MoCap

¥ ¥

q------- ------------

channel.0 channel.1 channel.2 channel.3 channel4 channel5 channel6 channel.7 channel.8 channel.9 channel.10 channel.11 channel.12 channel.13 channel.14 channel.15 channel.16 channel.17 channel.18 channel.19

real_left real_front

utragrid | Down_Fro Down_Syl Down bac Total Vime

T I ¥ ¥ ¥

Figure 1: telemersive-gateway, Network Matrix GUI Expanded, Screenshot for project ’Osmosis’, 2023.

ABSTRACT

This paper describes the Telemersive Toolkit [hereafter referred to
as TTKkit], a system that enables artists and educators to set up com-
plex low-latency multimedia streaming infrastructures between
multiple computers connected via networks. TTkit addresses the
challenge for non-technical personnel to create their own streaming
environment that does not require reconfiguration of the local net-
work infrastructure and allows computers to be connected across
different network configurations and firewall setups. The TTkit pro-
vides an intuitive user interface called telemersive-gateway [here-
after referred to as Gateway] to set up the network and displays
the current status of all streams — video, audio, motion tracking

“Main author
Developer of subsystem
*Prinicpal investigator

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IMX °24, June 1214, 2024, Stockholm, Sweden

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0503-8/24/06

https://doi.org/10.1145/3639701.3663637

data, control data — exchanged within the network. Each Gateway
on the network can monitor and configure the streaming setup of
all other Gateways on the network, making it a very convenient
tool for troubleshooting and helping artists, researchers as well as
educators (e.g. to assist novice users) in setting up their individual
machines. In order to evaluate TTkit, the Telematic Perfomance
Format Research Group has used it for its three most recent project
realisations in the form of telematic multimedia music and theater
performances, one of which, called ’Osmosis’, is described in this
paper to give a clearer understanding of the practical application of
this system. Our findings suggest that TTKkit is ready to be used by
a wider community, and we believe that it will help artists and edu-
cators to create their own networked performance environments
without spending too much time setting up the technical infras-
tructure, and thus focus more on the artistic freedom that the new
system offers.

CCS CONCEPTS

» Applied computing — Media arts; - Networks — Network
monitoring; « Information systems — Multimedia streaming;
+ Human-centered computing — Open source software; «
Computer systems organization — Real-time systems.

https://orcid.org/0000-0002-7317-6096
https://orcid.org/0000-0001-6183-4912
https://doi.org/10.1145/3639701.3663637

IMX ’24, June 12-14, 2024, Stockholm, Sweden

KEYWORDS

Telematics, Software, Tool, Network, Multimedia, Streaming, UDP,
OSC, Motion capture, Remote control, CLI, UltraGrid

ACM Reference Format:

Martin Frohlich, Roman Haefeli, and Patrick Miiller. 2024. Telemersive
Toolkit: Exchange Multi Media Streams for Distributed Networked Perfor-
mance Installations. In ACM International Conference on Interactive Media
Experiences (IMX °24), June 12—14, 2024, Stockholm, Sweden. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3639701.3663637

1 INTRODUCTION

With the opening salvos of Covid19 and the subsequent closure of
public life in the early spring of 2020, society as a whole suddenly
turned to digital collaboration in its ways of working together. The
performing arts in particular, with their closed theatres, cinemas
and performance stages, were faced with the existential challenge of
continuing their art in a remote way. And while some infrastructure
was already in place to meet this new demand, new tools had to be
developed to meet the individual needs of the artistic community
and their specific aesthetic development processes.

2 RELATED WORK

While the pandemic was a galvanizing moment to spur innovations
in the way we can remotely collaborate, the quest [11] to realize
telematic practices has its roots much earlier. The introduction of
the internet in the early 90’s of the last century marks the moment
when it became feasible for everybody equipped with the right
frustration tolerance to bring remote locations together in order
to experiment collaboratively with theater [7, 21], dance [26] and
music [25], including audio and video transmission and eventually
further control data as OSC! or MIDL These early adopters [8,
27, 36] used commercially available video conferencing software
[20, 28, 38], but the available network bandwidth, latency issues
and compression technology made it a very, let’s say, pixelated
experience. However, these systems were designed for a different
interaction scheme and not ideal for live performances.

The first generation of tools for Network (Music) Performances
[32] allowed greater integration with existing audio and video soft-
ware. Especially on the audio side, probably because of the time-
sensitive nature of music and the focus on high fidelity, a number of
solutions [5, 17] became available. On the video side, high-quality
video transmission software solutions originally developed for edu-
cational purposes or for telemedicine, namely Ultragrid [19] have
also been employed for such performances, but they still require
some technical acumen or even programming [22] to implement
into the desired infrastructure.

The second generation, with some of the core technological
challenges [4, 12](low latency, fidelity) now out of the way;, is fo-
cusing more on usability and collaboration. Some first generation
tools evolved to second generation tools, like Jacktrip [10] or LoLa
[17]. More recent audio streaming tools, catalysed by the Covid-
pandemic, like Jamulus [16] or Sonobus [24], emphasise ease of use.
Audio streaming software including video features like Soundjack
[3], Farplay [14], Elk [13], Source-Live [33] all make it easy for

10SC (open sound control) is a widely used data protocol in media installations:
https://en.wikipedia.org/wiki/Open_Sound_Control

Froehlich et al.

musicians to connect and play together. Their interfaces are well
designed and intuitive. While they meet the requirements of low
latency, fidelity and usability, they are still essentially video confer-
encing solutions for musicians. Other audio-streaming tools like
Artsmesh [15, 35] or TPF-Tools [18] propose UI solutions for the
use of multichannel audio streaming between locations, an issue
that is unresolved in most of the plug-and-play tools mentioned
above.

Other approaches seek to serve other performative arts. 'Dis-
tributed Theatre Performances’ [6] helps theatre productions con-
nect multiple stages, their local audiences and an online audience
through live video (and audio). ’Co-creation stage’ [31], which is
entirely web-based, is designed to facilitate collaboration [34] and
the involvement of diverse communities in the realisation of operas.
Both tools have built-in cueing systems to mix and match different
video sources and target screens. And both tools seem to have been
designed with a virtual TV studio in mind, but with bi-directional
features, unlike its inspiration.

The true children of Covid19 are Quacktrip [29], Digital Stage
[2], VDO.ninja [37] and LiveLab [9]. Quacktrip is a Pure Data im-
plementation based on Jacktrip and audio only, aimed mainly for
musicians. Digital Stage has a wider application within the per-
forming arts. It has a web interface for rehearsals, desktop solutions
for more complex configurations and a custom hardware solution.
VDO.ninja can connect up to 10 peers with audio and video (the
bandwidth is the limit since all its transmissions are peer-to-peer).
It stands out from the rest as it only needs a browser based on
chromium? and no registration is required. It is widely used by the
web streaming communities in combination with OBS3. LiveLab is
also a pure browser based solution and shows a very similar feature
set as VDO.ninja.

3 MOTIVATION

It is obvious that it is impossible to create one tool that fits all.
The approach described in this paper is to present a transmission
solution that can combine and seamlessly connect the rich content
creation tools that already exist. It provides the necessary interfaces
to manage, monitor and troubleshoot all data connections within
the network, and the required low latency and fidelity expected of
a modern distributed performance tool.

One reason TTkit and its accompanying services are designed
as they are boils down to the usage of UltraGrid as the core trans-
mission utility for video and audio. While Ultragird may not be the
lowest latency solution for audio [30, 32], it is to our knowledge for
video. It is open source, very robust, feature rich and can interface
with almost everything in hardware and software.

However, it is designed for single peer-to-peer connection. And
while there is a simple QT-based Ul available, its is at its core a CLI
application, which makes the usage for novices intimidating. But the
major problem to overcome is on the network side: the prevailing
network architectures with modern NAT-Routers? create security
hurdles that need to be overcome, and one solution is the UDP proxy
[18]. By expanding on that idea it was possible to use UltraGrid

2Chromium - https://de.wikipedia.org/wiki/Chromium_(Browser)

30BS - Open Broadcaster Software - https://obsproject.com/

4NAT (network address translation) routers separate the LAN from the Internet. This
increases security, because local computers are invisible from the Internet.

https://doi.org/10.1145/3639701.3663637

Telemersive Toolkit

in other typologies like ’one to many’. And since OSC can also
be transported via UDP, the topology 'many to many’ (imitating
OSCGroups [1]) worked with this approach, too.

Soon projects were realized that needed more than a few con-
nections between machines. And since for every connection two
instances of UltraGrid have to be started, one on the sender side
and one or many on the receiving end, a lot of similar looking
command line windows on diverse machines in different locations
started cluttering the window space. Then additional data types
had to be streamed at the same time. The complexity increased
by the subsequent need for more proxies to run on the server on
multiple ports. Using remote desktop solutions was an option, but
has the disadvantage of additional performance load on the GFX
card. In short: Troubleshooting became a nightmare.

A new solution had to be found.

4 SYSTEM
4.1 Terminology

To be concise in the description of this system, the following termi-
nology is used.

server: the central computer with a public IP

router: the set of services that runs on said server
client: a computer that resides in a LAN

peer: the local instance of Gateway running on said client
user: the person that uses said client

room: the session a peer joins to exchange data

proxy: UDP-proxy script running on the server

channel: one of 20 data connections available within a room
peer-device: the app running within a channel on a peer

4.2 Overview

There is a wide range of real-time content creation software avail-
able to create immersive media experiences, most of which now
have the ability to communicate with each other: In addition to
the usual suspects such as MIDI and OSC, the tools able for audio
allow seamless connections between audio applications. Similar
advances have been made for video applications with Spout® and
Syphon®, which allow textures to be shared on the GPU, a very
efficient and low-latency solution. Other tools share their streams
in native protocols via UDP multicast.

Unfortunately, there are limitations: Some of these solutions only
work between applications running on the same client, others are
limited to a simple network topology such as a LAN, or cannot be
bridged to a VPN. From the point of view of such an application,
Gateway is just another application running on a client like all the
others, so all these limiting factors are out of the way.

Once Gateway is connected to a router and joined to a room,
the UI provides access to the room matrix (Figure 1). Each row
represents one of the peers connected to the room, with the local
peer always in the top row. The columns represent the available
channels. Each cell contains one peer-device (described in 5.5).
Connections can only be established between two or more peers
when they select the same device type within the same channel.

SSpout - texture sharing technology for Windows - https://spout.zeal.co/
6Syphon - texture sharing technology for OSX - https://syphon.github.io/

IMX ’24, June 12-14, 2024, Stockholm, Sweden

To realise a connection diagram as shown in Figure 2, the user
dedicates a channel to each of the data streams to be transmitted,
creates the peer-devices and configures them depending on whether
they are of the sending or receiving type. The UI helps the user to
find the available data streams that need to be sent and, similarly,
on the receiving side, the data sinks to which the data needs to be
passed on to.

The outstanding feature of the Ul is its synchronicity with all
other peers. It is possible to create, configure, start, stop and remove
devices running on other clients on any of the Gateway’s instances
connected in the same room. This makes it possible to manage
all the peers from one client or help remotely connected users to
troubleshoot their potential problems.

Figure 1 shows how the interface looks like in case of a realized
project that is described in this paper. In this special case it is the
look from an additional peer that only monitors the connections.

5 IMPLEMENTATION DETAILS

switchBoard proxy typologies

telemersive-router

mauBroker

PYSTYS

ra 4
wov

telemersive-bus:
busManager

v
switchBoard

]
>
S

-} . -

vy
OpenstageControl

SN = ' holepuncher

Figure 2: Detailed network diagram of the telemersive-
gateway and the telemersive-router

5.1 Introduction

At first glance (Figure 2), the architecture may look like a classic
server-client system. This is not the case. The server has no database.
Instead, MQTT messages with a retained flag keep the system
consistent. And there is no central instance that has any idea what
aroom’s network topology looks like. This information is stored
with the individual peers. It is therefore possible to set up the same
network when peers choose to connect to a different router installed
on a different server, without having to transfer any other data.

5.2 Router

The router (also known as the telemersive-router) is responsible for
instantiating and managing rooms and relaying the UDP streams
that need to be exchanged between peers. These tasks are divided
into the following services:

5.2.1 The mqttBroker. is the backbone for the telemersive-bus,
coordinating the peers and the router. Each peer must connect to
this broker to access the available rooms. We are using the third
party developed Mosquito Broker [23] for this purpose.

IMX ’24, June 12-14, 2024, Stockholm, Sweden

5.2.2 The busManager. is the server part of the telemersive-bus, a
nodejs library, and can be thought of as the brain of the router. It is
connected to the mqttBroker. The busManager is responsible for
the live cycle of a room (described in 5.3).

5.2.3 The switchBoard. is a python script that starts and stops the
relay-stations, the so called proxies (described in 5.4). It is accessed
by the busManager via a REST-APL

5.2.4 OpenStageControl. 7 is a third party developed web based
control surface application. Each room has its own instance. It is
created and removed by the switchboard upon commands from the
busManager. This instance plays no active role in the management
of a room. It is an additional service that is available via its own
device (described in 5.5).

5.2.5 holepuncher. is an idiosyncratic name for the third party
developed nat-helper®. The service helps UltraGrid devices to estab-
lish peer-to-peer connections instead of sending the stream through
the proxies. It does not play an active role in the management of
a room. The installer for the router contains an already compiled
binary.

5.3 Room

A room can be thought of as a session that peers join to share data.
However, it is more than just a list of peers. To get a better picture of
how the router’s services work together, it is helpful to understand
the life cycle of a room:

5.3.1 Connecting to the broker. A peer must first connect to the
mgqttBroker. If successful, it will receive a list of available rooms
that are currently active on the router from the busManager.

5.3.2 Join non-existent room. If the peer tries to join a non-existent
room, the busManager creates the room and sets its password,
which cannot be changed during the live cycle of the room.

5.3.3 Create room. When creating a room, the busManager assigns
a number to the room, starting with 11. This room number is also
an indication of the ports assigned to this room on the server: if the
room number is 11, the assigned ports are 11000 - 11999, if the room
number is 13, the assigned ports are 13000 - 13999. However, not all
ports are used. Because there are only 65525 ports available and the
numbering starts with 11000, in theory the limits of rooms running
on one server is 53. For practical reasons’ the limit is rather with
49000 and so the number of rooms should not exceed 38, though no
limitations is yet built into the busManager, for the simple reason
we never exceeded 3 or 4 concurrent rooms, yet.

5.3.4 Create room proxies. Then the busManager commands switch-
Board to create the proxies: Each room is assigned 20 channels, with
4 proxies running on each channel. Table 1 shows the port assign-
ments.

7Open Stage Control - an open source web based control surface application - NOT to
be confused with Open Sound Control - https://openstagecontrol.ammd.net/
8nat-helper - Hole punching coordinator ~ for UltraGrid -
https://github.com/CESNET/UltraGrid/tree/master/nat-helper

9The range 49152-65535 contains dynamic or private ports that could cause conflicts
with other services

Froehlich et al.

H proxy typology ‘one’ port ‘many’ port H
many2manyBi on port: xxcc9
one2manyMo on ports: XXcc2 -> Xxcc6
one2manyMo on ports: xxcc4 -> xxcc8

one2manyBi on ports: xxcc0 <-> xxccl

Table 1: Port assignments of UDP proxies, where xx = room
nr and cc = channel nr

5.3.5 Instance OpenStageControl. The final task in room creation is
to set up an instance of OpenStageControl, along with an additional
many2manyBi proxy to communicate with it.

5.3.6 Concluding Room Creation. Once all instances and proxies
are started, the busManager acknowledges the room creation to
the requesting peer and returns the room number that the peer
needs to make the correct connections from the individual devices
running in its channels.

5.3.7 Join existing room. The busManager checks access attempts
to join the room by other peers. It informs all connected peers in
the room about peers joining or leaving the room.

5.3.8 Housekeeping. The busManager regularly checks and in-
forms about the joined peers. If a peer doen’t response to a hous-
keeping ping, the busManager will remove the peer from the room
by giving notice to all joined peers.

5.3.9 Room Removal. The busManager removes the room when
all peers have left or none of the joined peers respond to its pings.
It initiates the removal of all associated proxies and the OpenStage-
Control instance.

To summarise. If a user wants to invite another user to the same
room, he has to provide the access information to the mqttBroker
and the name and password of the room. For a Gateway user, man-
aging a room is as simple as providing a name and password. If the
room doesn’t exist, a new room will be created with the given name
and password. If the room exists, the peer will access the room if
the passwords match.

5.4 Proxy

A proxy is a Python script that is started and stopped by the switch-
Board and listens on one or two ports, acting as a simple UDP relay
station. The proxy allows two (or more) clients in separate private
networks to exchange messages, even when none of the clients uses
a public IP address. There are several types of proxies to support
different topologies:

e many2manyBi is a many-to-many bi-directional proxy. Used
by the OSC and StageControl device.

e one2manyBi is a one-to-many bi-directional proxy. Used by
the natnet20SC device.

e one2manyMo is a one-to-many mono directional proxy. Used
by the UltraGrid device

For proxies to identify which clients should receive data, the
client applications interested in the data stream must send a mes-
sage (any byte sequence) at regular intervals. As long as the proxy

Telemersive Toolkit

receives any message, it keeps the client’s address in its destination
list and forwards packets from the sender to all destinations. If after
a predefined timeout (e.g. 10 seconds) no message has been received
from a receiver, the proxy will remove its address from the desti-
nation list to keep network traffic to a minimum. For bidirectional
proxies there is a specific message called heartbeat message that
keeps the address in the destination list but is otherwise ignored
and is not passed on.

This methods not only enables clients to exchange messages
with other clients that are otherwise invisible to each other, it also
allows to cross firewalls that are typically used in NATed networks.

UltraGrid can natively accomplish this because it is designed
for bidirectional peer-to-peer connections. However, many appli-
cations rely solely on uni-directional UDP sockets (e.g., for com-
munication via OSC) and are therefore incapable of sending and
receiving messages on the same socket—a prerequisite for receiving
data from proxies. Such applications require a bridge to receive
data from the proxy. The OSC- and StageControl-device offer this
service.

5.5 Peer device
There are currently 4 device types available:

e 0SC: opens a bi-directional UDP bridge connection for gen-
eral use. It allows to send and receive OSC data between
individual peers.

e StageControl: opens a bi-directional UDP bridge connec-
tion to the running Open Stage Control instance and all the
connected peers. It also provides a button to open the control
interface of Open Stage Control in the default web browser.

e UltraGrid: configures and starts an UltraGrid instance for
video and / or audio and allows to define different parameters
(e.g. video and audio codecs, bitrate and framerate, number
of audio channels, etc.). One UltraGrid instance (an therefore
one Gateway channel) can deal with as many audio channels
as an attached audio device can deliver.

e natnet20SC: configures and starts a Natnet20SC'? instance
and allows to define different parameters (e.g. address and ar-
gument shape, yup-to-zup or righthand-to-lefthanded trans-
formation, etc). It converts Motive’s'! native data protocol
to OSC and sends it further to listening peer-devices.

5.6 Gateway

The Gateway application is developed using Max!?. It works mainly
as a Ul wrapper for the peer devices running inside externals,
which keep the running processes in their own thread and away
from Max’s main scheduling thread. This ensures that the UI runs
smoothly and responsively at all times.

To start and stop CLI applications like UltraGrid and NatNet20SC
from within Max, special externals were developed. Their job is
to ensure that the sub-processes in which the CLI applications are
started are also stopped and properly cleaned up, even if Gate-
way crashes for some unforeseen reason. This externals works on

1ONatNet20sc - Optitrack native motion data to OSC conversion tool -
https://github.com/tecartlab/app_NatNetThree20SC

Motive Software by Optitrack - Motive pairs with OptiTrack cameras to track and
capture motion - https://www.optitrack.com/software/motive/

2Max by Cycling’74 - https://cycling74.com/

IMX ’24, June 12-14, 2024, Stockholm, Sweden

both Windows and OSX and are realized using Max-Go'®. While
the footprint of these externals are much larger than normal C or
C++ externals for Max, their stability and reliability makes them
worthwhile, as solutions based on the shell'# object suffered from
various problems, including unwanted daemons blocking ports and
thus requiring machine reboots to get rid of, or firewalls triggering
excessively.

The Gateway also stores the settings of the local peer and the
enabled local devices. Once it joins a room, it loads the last saved
state and starts all its local devices. It is possible to export and
import settings.

The main logic of Gateway is in the nodejs script, the busClient.

5.7 busClient

The telemersive-bus is a nodejs library mode of two parts, the bus-
Manager - which was covered in detail in a previous chapter - and
the busClient, which will be covered here. While the busManager
takes care of the live-cycle of the rooms and their access, a busClient
is the main administrative logic of a peer. It is responsible for keep-
ing up to date with the internal states of all other connected peers.
And it does this without any central oversight by using the MQTT
protocol’s retained messages in the following way.

The MQTT protocol is based on a publish/subscribe pattern:
services connected to a broker!® can publish or subscribe to topics!®.
For a service to keep up to date with specific topics, it only needs
to subscribe to the topic and it will receive any published changes.
If the topic is published with a retain flag, the last value of the topic
is stored by the broker, and as soon as a new service subscribes to
the topic, it gets the last value set to the topic.

Once a busClient has successfully joined a room, it will publish
its current state (e.g. Ul settings) to that topic with a retain flag:

tBus/rooms/<roomName>/<peerID>/<UI>/<current>/<state> <value>

where peerID is a UUID!7 assigned to a peer at startup. Then
the busClient subscribes to the following topic:

tBus/rooms/<roomName>/#

By using the multi-level wildcard #, it gets all changes to all
topics from all peers in the room it has joined. All busClient needs
to do from here is to convert UI changes to topics and vice versa.

6 USE CASE

The project presented here is not the latest to use this tool, but it is
the most comprehensive stress test to date in terms of the number
of connections and machines using TTkit simultaneously.

6.1 Osmosis

Osmosis was a concert that highlighted the asymmetry between
telematically connected spaces. It was performed during the 2022
edition of the NowNet Arts Conference on 31 October, with a live

BMax-Go - Toolkit for building Max externals with Go -
https://github.com/256dpi/max-go

14Max Shell Object - https://github.com/jeremybernstein/shell

ISMQTT broker is a server that receives all messages from services and then routes
them to the appropriate destination services.

16MQTT topic is a string consisting of one or more levels separated by a forward slash
(looks like an OSC address)

7Universally Unique Identifier (UUID) is a 128-bit label used for information in com-
puter systems

IMX ’24, June 12-14, 2024, Stockholm, Sweden

Figure 3: Osmosis - Screenshot from Vimeo transmission

broadcast via OBS and Vimeo to the conference venue, combining
a split-screen selection of available video sources and a binaural
sound mix. [39] gives a comprehensive overview of the project, the
theoretical background, a description of the scenographic setup of
the two rooms and the complex audio routing involved. It does not
go into the details of the video setup. This chapter aims to change
that.

6.2 Setup

Although the two spaces (hereafter referred to as IAS and Action)
had completely different scenographies, they shared some key as-
pects (see also Figure 4):

e Video: Both spaces had a dedicated MacPro with 4 cam-
eras attached to a decklink capture card with OBS stream-
ing/recording.

e Mocap: Both had an Optitrack Mocap system running

e Projectors: Both had a SPARCK!® dynamic projection map-
ping running with two projectors. SPARCK got the required
video feeds via Spout from the Gateway.

e Audio: Both had a dedicated MacBook Pro laptop for con-
trolling the mulichannel audio streams and to facilitate the
sound mix to the loudspeaker systems (with a 37 loudspeaker
array for Ambisonic rendering in the IAS room)

The Action room differed in that it had an additional 3 Re-
alsense!® cameras attached to a computer that captured them using
the python-based Space Stream script?’. An additional projector
was also attached to the same machine. All of the machines shown
had an instance of Gateway running.

Figure 1 is a screenshot of the Gateway GUI just after the show
and depicts the same setup as the connection diagram seen in
Figure 4. A total of 31 video, 4 mocap and 4 OSC streams were used,
either to or from the router. The video streams were full HD, the
Realsense streams had a resolution of 1700x480. All were encoded in
h.264 and the bitrate limit was set at 20Mbit, resulting in excellent
quality with no noticeable glitches. For the multichannel audio
streaming, the TPF-Tools were used independently from TTKkit.

183pacial Augmented Reality Contruction Kit (SPARCK) https://github.com/immersive-
arts/Sparck2. See also https://tecartlab.com.

Intel Realsense D455 - https://www.intelrealsense.com/depth-camera-d455/
NSpace Stream - Send RGB-D images over spout / syphon -
https://github.com/cansik/space-stream

Froehlich et al.

In more recent projects where synchronicity between audio and
video streams was more important than ultra-low audio latency,
we streamed multichannel audio through TTkit via UltraGrid as
well and with very stable results.

Action

Figure 4: Osmosis spaces and their devices and the connecting
data streams for video, mocap and control

6.3 Findings

While the smooth video reception was obviously a testament to our
university internet backbone, the success of the resulting project
proved the concept of this type of system architecture. This was
particularly important as there was only this one performance in a
fixed time slot, with a live audience on the other side of the planet
watching our efforts.

OpenStageControl was used in this setting for the first time to
see if it could be used as a show control solution. The four OSC
streams were the link to this instance. We were able to reliably
trigger all cues during the show with the browser-based tool and
the experience convinced us to make it a permanent part of the
TTkit.

7 CONCLUSION

We have successfully developed a robust, easy to install and open
source software that extends the functionality of an already existing
and feature rich tool like UltraGrid, with added OSC streaming
capabilities as well as an OpenStageControl integration for show
control. This enables the realization of highly complex multimedia
system architectures spanning many machines, physical locations
and network infrastructures. The experience gained from several
projects that relied heavily on the new capabilities helped to refine
and fine-tune usability and reliability.

The peer synchronization feature of the UI has been proven to be
a viable approach, giving one person the power to monitor, main-
tain and control the entire network from any one of the Gateway
instances. It is now the core feature of the experience of interacting
with TTkit, alongside all the other features.

We were also able to show how the tool can be used in a real
world setting that pushed the boundaries by sending more than

Telemersive Toolkit

30 simultaneous video and mocap data streams and successfully
interfacing with a wide range of real-time content creation soft-
ware, enabling the creation of two telematically linked immersive
experiences, giving credence to the given name of a Telemersive
Toolkit?!.

ACKNOWLEDGMENTS

The development of TTkit was realized by the Telematic Perfo-
mance Format?? Research Group and its research project “Spatial
Dis/Continuities in Telematic Performances”, funded by the Swiss
National Science Foundation. The TPF group is based at the Insti-
tute for Computer Music and Sound Technology and the Immersive
Arts Space of the Zurich University of the Arts. The group consists
of Patrick Miiller, Benjamin Burger, Joel De Giovanni, Martin Fréh-
lich, Roman Haefeli, Eric Larrieux, Johannes Schiitt, Hannah Walter
and Matthias Ziegler. We would like to thank the members of our
research team and all the other users of the prototypes, whose pa-
tience and feedback have made it what it is today. Special thanks
goes to the developers of UltraGrid, who were open to suggestions
and quickly implemented features in line with their philosophy,
and to Joél Gahwiler for writing the custom max externals.

REFERENCES

[1] Ross Bencina. 2024. OSCgroups. http://www.rossbencina.com/code/oscgroups
Accessed: 2024-1-24.

[2] Digitale Bihne. 2024. digital-stage. https://digital-stage.org/startseite Accessed:
2024-1-25.

[3] Alexander Car6t. 2024. Soundjack.
2024-1-25.

[4] Alexander Carot, Christian Hoene, Holger Busse, and Christoph Kuhr. 2020. Re-

sults of the Fast-Music Project—Five Contributions to the Domain of Distributed

Music. IEEE Access 8 (2020), 47925-47951. https://doi.org/10.1109/access.2020.

2979362 Related Work: Research to create low latency connections for Audio

and Video in distributed networked music collaborations - related to soundjack.

Chris Chafe, Scott Wilson, Randal Leistikow, Dave Chisholm, and Gary Scavone.

2000. A SIMPLIFIED APPROACH TO HIGH QUALITY MUSIC AND SOUND

OVER IP. In Proceedings of the COST G-6 Conference on Digital Audio Effects.

https://dafx.de/paper-archive/index.html

Teresa Chambel, Paula Viana, V Michael Bove, Sharon Strover, Graham Thomas,

Rene Kaiser, Marian F Ursu, Manolis Falelakis, and Andras Horti. 2015. En-

abling Distributed Theatre Performances through Multi-Camera Telepresence.

Proceedings of the 3rd International Workshop on Immersive Media Experiences

(2015), 21-26. https://doi.org/10.1145/2814347.2814351 Related Work: this sys-

tem emphasises the lines of communications between the different performance

locations, their individual local audioences and home audience and an authoring
tool to control and mix all these different communcation channels.

[7] Maria Chatzichristodoulou. 2014. Cyberformance? Digital or Networked Perfor-

mance? Cybertheaters? Virtual Theatres?... Or All of the Above? In CyPosium
- the book, Annie Abrahams and Helen Varley Jamieson (Eds.). Link Edition,
Brescia, 19-30. www.lulu.com

[8] John Crawford. 2005. Active space. ACM SIGGRAPH 2005 Sketches on - SSGGRAPH

05 (2005), 111-es. https://doi.org/10.1145/1187112.1187246 Introduction: Active

space - interactive system for realizing networked multi-site performances.

CultureHub. 2024. LiveLab. https://www.culturehub.org/livelab Accessed:

2024-1-25.

[10] Juan-Pablo Céceres and Chris Chafe. 2010. JackTrip: Under the Hood of an
Engine for Network Audio. Journal of New Music Research 39, 3 (2010), 183—
187. https://doi.org/10.1080/09298215.2010.481361 Related Work: Jacktrip: a low
latency audio peer to peer transmission framework.

[11] Steve Dixon. 2007. Digital Performance - chapter 17 - Telematics- Conjoining
Remote Performance Spaces. In Digital Performance: A History of New Media in
Theater, Dance, Performance Art, and Installation. 419-435. https://doi.org/10.
7551/mitpress/2429.003.0024 Introduction.

https://www.soundjack.eu/ Accessed:

(5

=

6

=

[9

=

2 Telemersive Toolkit - https://github.com/telemersion/
Zhttps://networkperformance.space/

[12

— ==
L)

jengranrany
2,9

=
)

[26]

[27]

[28

[29

[30]

(31]

[32

[33

(34]

IMX ’24, June 12-14, 2024, Stockholm, Sweden

Carlo Drioli, Claudio Allocchio, and Nicola Buso. 2013. Networked Performances
and Natural Interaction via LOLA: Low Latency High Quality A/V Streaming Sys-
tem. In Information Technologies for Performing Arts, Media Access, and Entertain-
ment (Lecture Notes in Computer Science). 240-250. https://doi.org/10.1007/978-
3-642-40050-6_21 Related Work: Creating the basic infrastructure of low latency
tech and then develop a desktop app to access the network: Installation is not
for the faint hearted and requires very specific hardware setup..

Elk.audio. 2024. Elk. https://www.elk.audio/ Accessed: 2024-1-25.

Farplay. 2024. Farplay. https://farplay.io/ Accessed: 2024-1-25.

Kenneth Fields. 2012. Syneme: Live. Organised Sound 17, 1 (2012), 86 — 95.
https://doi.org/10.1017/s1355771811000549 Introduction: Tools and Works using
state of the arts and custom build software like artsmesh.

Volker Fischer. 2024. Jamulus. https://jamulus.io/ Accessed: 2024-1-25.

GARR. 2024. LoLa. https://lola.conts.it/ Accessed: 2024-1-25.

Roman Haefeli, Johannes Schiitt, and Patrick Miiller. 2019. TPF-TOOLS - A
MULTI-INSTANCE JACKTRIP CLONE. In Proceedings of the 17th Linux Audio
Conference (LAC-19). http://lac.linuxaudio.org/2019/doc/haefeli.pdf Related
Work: Convenient Userinterface around core audio low latency infrastructure.
Petr Holub, Ludék Matyska, Milo§ Liska, Lukas Hejtmanek, Jifi Denemark, Tomas
Rebok, Andrei Hutanu, Ravi Paruchuri, Jan Radil, and Eva Hladka. 2006. High-
definition multimedia for multiparty low-latency interactive communication.
Future Generation Computer Systems 22, 8 (2006), 856—-861. https://doi.org/10.
1016/j.future.2006.03.014 Ultragrid paper.

iVisit. 2024. iVisit. https://download.cnet.com/ivisit/3000-2150_4-10013125.html
Accessed: 2024-1-25.

Helen Varley Jamieson. 2008. Adventures in Cyberformance. Ph.D. Dissertation.
Wolfgang Jager. 2010. Audio over OSC. Technical Report. https://phaidra.kug.ac.
at/detail/0:11413

Roger A Light. 2017. Mosquitto: server and client implementation of the MQTT
protocol. The Journal of Open Source Software 2, 13 (2017), 265. https://doi.org/
10.21105/j0ss.00265

Sonosaurus LLC. 2023. Sonobus. https://sonobus.net/ Accessed: 2024-1-25.
Patrick Miiller, Johannes Schiitt, and Matthias Ziegler. 2019. Towards Telematic
Dimension Space. In Proceedings of the International Conference on New Interfaces
for Musical Expression. 393-400.

L. Naugle. 1998. Digital dancing. IEEE MultiMedia 5, 4 (1998), 8-12. https:
//doi.org/10.1109/93.735864 Introduction: Dancing performances based on early
video conferencing tool CU-SeeMe.

Lisa Marie Naugle. 2002. Distributed Choreography: A Video-Conferencing
Environment. A Journal of Performance and Art 24, 2 (2002), 56-62. http://
www.jstor.org/stable/3246553 introduction: early adopters of video conferencing
environments for distributed choreography.

PictureTel. 2024. PictureTel. https://de.wikipedia.org/wiki/PictureTel _
Corporation Accessed: 2024-1-25.

Miller Pucket. 2024. Quacktrip. https://msp.ucsd.edu/tools/quacktrip/ Accessed:
2024-1-25.

Benjamin Paul Redman. 2021. Utilizing Internet-Based Videoconferencing for
Instrumental Music Lessons. Ph. D. Dissertation.

Héctor Rivas, Ana Dominguez, Stefano Masneri, Ifiigo Tamayo, Mikel Zorrilla,
Pedro Almeida, Alina Striner, Jie Li, and Pablo Cesar. 2021. Co-creation Stage-
a Web-based Tool for Collaborative and Participatory Co-located Art Perfor-
mances.pdf. In Proceedings of the 2021 ACM International Conference on Interactive
Media Experiences. 267-274. https://doi.org/10.1145/3452918.3465483 Related
Work:web client based audio and video distribution system for collaborative
performances..

Cristina Rottondi, Chris Chafe, Claudio Allocchio, and Augusto Sarti. 2016. An
Overview on Networked Music Performance Technologies. IEEE Access 4 (2016),
8823-8843. https://doi.org/10.1109/access.2016.2628440 Introduction: Music
performances specific need for low latency solu.

source live. 2024. source-live. https://www.source-elements.com/products/
source-live/ Accessed: 2024-1-25.

Alina Striner, Thomas Roggla, Mikel Zorrilla, Sergio Cabrero Barros, Stefano
Masneri, Héctor Rivas Pagador, Irene Calvis, Jie Li, and Pablo Cesar. 2022. The
Co-Creation Space: Supporting Asynchronous Artistic Co-creation Dynamics
(Companion Computer Supported Cooperative Work and Social Computing). 18-22.
https://doi.org/10.1145/3500868.3559459 Related work: Cocreation social network
for collaborating in the design and rehearsal of perfomative art works.

Syneme. [n.d.]. Artsmesh. https://www.artsmesh.com/ Accessed: 2024-1-25.
Atau Tanaka. 1999. Network Audio Performance and Installation. In ICMC
Preceedings, Vol. 1999. http://hdlhandle.net/2027/spo.bbp2372.1999.460
VDO.Ninja. 2024. Video Ninja. https://vdo.ninja/ Accessed: 2024-1-25.
Wikipedia. 2024. CUSeeMe. https://en.wikipedia.org/wiki/CU-SeeMe Accessed:
2024-1-25.

Matthias Ziegler. 2023. Osmosis Asymmetries in Telematic Performance. Journal
of Network Music and Arts 5, 1 (2023).

http://www.rossbencina.com/code/oscgroups
https://digital-stage.org/startseite
https://www.soundjack.eu/
https://doi.org/10.1109/access.2020.2979362
https://doi.org/10.1109/access.2020.2979362
https://dafx.de/paper-archive/index.html
https://doi.org/10.1145/2814347.2814351
www.lulu.com
https://doi.org/10.1145/1187112.1187246
https://www.culturehub.org/livelab
https://doi.org/10.1080/09298215.2010.481361
https://doi.org/10.7551/mitpress/2429.003.0024
https://doi.org/10.7551/mitpress/2429.003.0024
https://doi.org/10.1007/978-3-642-40050-6_21
https://doi.org/10.1007/978-3-642-40050-6_21
https://www.elk.audio/
https://farplay.io/
https://doi.org/10.1017/s1355771811000549
https://jamulus.io/
https://lola.conts.it/
http://lac.linuxaudio.org/2019/doc/haefeli.pdf
https://doi.org/10.1016/j.future.2006.03.014
https://doi.org/10.1016/j.future.2006.03.014
https://download.cnet.com/ivisit/3000-2150_4-10013125.html
https://phaidra.kug.ac.at/detail/o:11413
https://phaidra.kug.ac.at/detail/o:11413
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://sonobus.net/
https://doi.org/10.1109/93.735864
https://doi.org/10.1109/93.735864
http://www.jstor.org/stable/3246553
http://www.jstor.org/stable/3246553
https://de.wikipedia.org/wiki/PictureTel_Corporation
https://de.wikipedia.org/wiki/PictureTel_Corporation
https://msp.ucsd.edu/tools/quacktrip/
https://doi.org/10.1145/3452918.3465483
https://doi.org/10.1109/access.2016.2628440
https://www.source-elements.com/products/source-live/
https://www.source-elements.com/products/source-live/
https://doi.org/10.1145/3500868.3559459
https://www.artsmesh.com/
http://hdl.handle.net/2027/spo.bbp2372.1999.460
https://vdo.ninja/
https://en.wikipedia.org/wiki/CU-SeeMe

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 System
	4.1 Terminology
	4.2 Overview

	5 Implementation Details
	5.1 Introduction
	5.2 Router
	5.3 Room
	5.4 Proxy
	5.5 Peer device
	5.6 Gateway
	5.7 busClient

	6 Use Case
	6.1 Osmosis
	6.2 Setup
	6.3 Findings

	7 Conclusion
	Acknowledgments
	References

